Identification of Indonesian Authors Using Deep Neural Networks
نویسندگان
چکیده
Author Name Disambiguation (AND) is a problem that occurs when set of publications contains ambiguous names authors, i.e. the same author may appear with different (synonyms) in other published papers, or (authors) who be have name (homonym). In this final project, we will design model Deep Neural Network (DNN) classifier. The dataset used project uses primary data sourced from Scopus website. This research focuses on integrating Indonesian authors. Parameters accuracy, sensitivity and precision are standard benchmarks to determine performance method solve AND problems. best DNN classification achieves 99.9936% Accuracy, 93.1433% Sensitivity, 94.3733% Precision. Then for highest measurement, case Non Synonym-Homonym (SH) has 99.9967% 96.7388% 97.5102%
منابع مشابه
rodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
Cystoscopy Image Classication Using Deep Convolutional Neural Networks
In the past three decades, the use of smart methods in medical diagnostic systems has attractedthe attention of many researchers. However, no smart activity has been provided in the eld ofmedical image processing for diagnosis of bladder cancer through cystoscopy images despite the highprevalence in the world. In this paper, two well-known convolutional neural networks (CNNs) ...
متن کاملImproving native accent identification using deep neural networks
In this paper, we utilize deep neural networks(DNNs) to automatically identify native accents in English and Mandarin when no text, speaker or gender information is available for the speech data. Compared to the Gaussian mixture model(GMM) based conventional methods, the proposed method benefits from two main advantages: first, DNNs are discriminative models which can provide better discriminat...
متن کاملLanguage Identification Using Deep Convolutional Recurrent Neural Networks
Language Identification (LID) systems are used to classify the spoken language from a given audio sample and are typically the first step for many spoken language processing tasks, such as Automatic Speech Recognition (ASR) systems. Without automatic language detection, speech utterances cannot be parsed correctly and grammar rules cannot be applied, causing subsequent speech recognition steps ...
متن کاملNonlinear Systems Identification Using Deep Dynamic Neural Networks
Neural networks are known to be effective function approximators. Recently, deep neural networks have proven to be very effective in pattern recognition, classification tasks and human-level control to model highly nonlinear realworld systems. This paper investigates the effectiveness of deep neural networks in the modeling of dynamical systems with complex behavior. Three deep neural network s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computer Engineering and Applications
سال: 2022
ISSN: ['2252-4274', '2252-5459']
DOI: https://doi.org/10.18495/comengapp.v11i1.398